Building Operator Certification in NYC

Michael Bobker, M.Sc., CEM
Director, Building Performance Lab
City University of New York

EE HUB - Philadelphia, PA 9-19-12
About BOC

• National program - NEEC
 – Regional providers + utility partners
 – ANSI-IACET accreditation
 – 135 hours of training (levels 1 + 2)
 – Project work in home facility
 – Maintenance of Certification (CEU)

• CUNY-BPL - “Authorized Provider” for NYC
 – Institutional training partners
 – 15 - 30 weeks
 – NYSERDA support
Industry Trends

• Measured performance with rankings and labels
• New technologies – performance assurance
• Systems Thinking – moving Operations beyond component repair and complaint response

Understand what competencies are being sought
Mechanism for action

- **Preparing the Operator to be "in the loop"**
 - Feedback in On-going Cx and RCx
 - Getting the data
 - Appreciating the data

- Operating Engineers are a unique breed
 - Intuitive, not highly quantitative
 - Hands-on approach, get things done
Transformative Goal

Operators’ New Mission

Instilling efficacy, not preaching

Greening the grizzly skeptic
Logic Model & Improvement Process

OPERATOR COGNITION

Knowledge-Skills-Abilities

motivators

OPERATOR BEHAVIORS

BUILDING OUTCOMES

Interpretive Skills

TRAINING
Instructional Design based on Skill Sets for -

• Understanding Energy & IAQ dimensions of system operations

• Documenting systems, conditions, operations

• Using energy and other data for measuring and interpreting of performance

• Working quantitatively, visualizing data

• Identifying and describing improvement opportunities, working in organizational teams
Pedagogy

- **Science concepts**
 - Physics-based processes

- **Quantification**
 - Units of measure & measurement tools
 - Use of formulae, calculations, spreadsheets

- **Practical Projects**
 - Schematics
 - Controls
 - Energy Data
 - Improvements

Learning-By-Doing
Structure DOING

• *Observation* Observe and DRAW Building Systems
• *Data* Energy data feedback from benchmarking data
• *PROJECTS* Plan improvements
Project-based learning

Initial

schematics of building systems
 • Mechanical
 • Electrical

Second level

introduce energy data.
 • ESPM
 • dashboard
 • Lab learning.

Conclusion

identify and characterize improvement project
Structuring Observation, Encouraging DOING in home facilities
Use data in projects

Teaching Tools - 2
What students have to do: energy use histories

2 tables:
- Use by type
- End-use allocation

Teaching Tools - 3
What students have to do: Project Characterization

Spreadsheets
Support

Comparison

Conditions

Actions

Outcomes

- Graphic data plots
- Peer groups
- Event recording

Creating a user-friendly data interface with IBM Research "Smarter Planet" program
Transformation

It takes TIME

- 30 week experience
- Progressive development of skills, thought-processes
Long-term On-going Process

• Communities of Practice
 – Social media
 – Events
 • maintenance of certification “fair”
• Evaluation
 – longitudinal research
Directions

• On-line “blended” learning
• Coordination with other organizational levels
• Specialized offerings
 • Retro-commissioning & Re-tuning
 • High-tech facilities
 • Controls, Controls, Controls
Thank you for your attention.
Let’s Work Together.

Michael Bobker
CUNY Building Performance Lab
michael.bobker@baruch.cuny.edu