Invasive Modeling of Portfolio Energy Data for Effective Use with Energy Managers
Honey Berk, Marco Ascazubi, Michael Bobker | CIUS Building Performance Lab, City University of New York

Abstract
Development, features, and use of a tool for inverse energy modeling for a portfolio of municipal buildings is described. The tool is software-automated to enable batch-processing. Statistical fitness is automatically evaluated to provide a baseline for energy retrofit program measurement and verification (M&V). Particular attention is paid to tool outputs that support use by an end user, such as an energy manager, for initial facility diagnostic purposes to guide further investigation.

Objectives and Modeling Approach
The fundamental objective of the work was to provide an industry-standard basis for evaluating NYC’s municipal energy retrofit program. This process required a statistically-validated linear regression model for whole facility energy use, per the requirements of the International Performance Monitoring and Verification Protocol (IPMVP) and ASHRAE Guideline 14. The methodology set forth in the ASHRAE Inverse Modeling Toolkit (Kissock, 2003) was applied. During the course of the work, we realized that, in addition to the basis for M&V, the method could also be used to provide diagnostic insights into building performance and potential systems improvements (Kissock, 2004). This became an important objective of the work as the client agency energy managers are, at present, much more involved in energy efficiency project identification than M&V.
A third, less developed, objective was to be able to use inverse models in conjunction with physics-based forward models. A third, less developed, objective was to be able to use inverse models in conjunction with physics-based forward models. In work with other teams (Eicker, 2016; Schumacher, 2017) we discovered that the partitioning of baseline versus weather sensitive loads in change-point models can be useful to validation and calibration of forward models.

Methods
After an initial two years of manual processing using industry-standard tools, a semi-automated batch-processing procedure was developed. Visual Basic (VBA) scripts were used to import NYC facility energy consumption data files, and to clean and prepare data for batch processing using Energy Explorer (Kissock, 2008). Output from this process was then used to recreate change-point linear regression models in MS Excel, and a scripted algorithm used a series of three tests — a shape test, a t-test and a data population test — to select the best-fitting model (2-, 3-, 4-, or 5-parameter) (Figure 1). The selected model was then displayed in a simple dashboard format, along with regression coefficients and associated statistical metrics (Figure 2).

Full Process Automation. The modeling process was fully automated using a custom-developed Python application, PyBEMA, linked to a database management system. Change-point models were generated in PyBEMA using piecewise linear regression, and processed data was then pushed to an enhanced MS Excel dashboard (Figure 2).

Timeframes. The number of data points were increased from 12 months to 24 to account for various data fidelity issues, such as estimated meter readings. Models were also improved with normalization to actual billing periods.

Data Visualization and Usability Testing. The enhanced MS Excel dashboard includes additional evaluative visualizations and associated metrics, presented for one facility at a time though benchmarked against the full dataset. Usability testing is currently underway with NYC client agency energy managers.

Discussion and Analysis
Interpreting Poor Fit. Estimated utility meter readings, lack of fuel oil consumption data contribute to poor model fit. Operational issues related to occupancy/operating hours require multivariate analysis to improve model fit.

Interpreting Baseload. Baseload is identified as a corollary of change-point, and is quantified as the value of that point in the y-axis (i.e., y-intercept).

Interpreting Change-point. Change-point is analogous to a facility’s thermal balance point above which energy is used for heating and below which energy is used for cooling.

Interpreting Slopes. The slope indicates seasonal energy use per degree of outdoor air temperature, and degree of steepness of the slope can therefore provide an indication of a facility’s overall heating or cooling efficiency (with caveats).

Initial User Experience Testing Results. Users tend to focus strongly on the value of heating/cooling change-points and the degree of heating/cooling slopes. However, there is a tendency to misinterpret these metrics for, in particular, the slopes are often assumed to be heating/cooling thermostat setpoints. This primary focus on change-points and slopes often causes users to overlook the magnitude of the baseline, and therefore not as strongly consider more/low-cost operational measures that could potentially reduce consumption.

Future Work. MS Excel is being phased out as the dashboard is ported to a web-based environment.

References